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Abstract: In this article, we have presented a three-parameter univariate continuous distribution called Logistic-Exponential power 

distribution. We have discussed some mathematical and statistical properties of the distribution such as the probability density 

function, cumulative distribution function and hazard rate function, survival function, quantile function, the skewness, and kurtosis 

measures. The model parameters of the proposed distribution are estimated using three well-known estimation methods namely 

maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods. All the 

computations are performed using R software. The goodness of fit of the proposed distribution is also evaluated by fitting it in 

comparison with some other existing distributions using two real data sets. 
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I. INTRODUCTION 

 

In probability theory and applied statistics, the exponential model plays a crucial role in analyzing the life testing data. It is 

the probability distribution of the time between trials in a Poisson point process, i.e., a progression in which events occur continuously 

and independently at a constant average rate. It is a special case of the gamma distribution. It is the continuous analog of the 

geometric distribution, and memoryless is the important properties of this distribution. In addition to being applied for the analysis of 

Poisson point processes, it is found in various other contexts. A generated survival model that take account of the different shapes like 

Increasing, decreasing, bathtub-shaped, and inverted Bathtub-Shaped failure rate in a single model would be beneficial in survival 

study. Such a model would provide considerable flexibility and goodness of fit for fitting a broad variety of lifetime data sets. Such a 

survival model might also be taken to establish the distribution class from which the data is selected, by constructing confidence 

interval over its parameters. The logistic exponential power distribution introduced here satisfies these criteria. 
 

The logistic distribution is a single variate continuous probability distribution and both of its PDF and CDF functions have 

been used in many different fields such as logistic regression, logit models and neural networks. It has been used in the physical 

sciences, biological sciences, sports modeling, and recently in finance as well as insurance. The logistic distribution has thicker tails 

than a normal distribution so it is more consistent with the underlying data and provides good insight into the likelihood of extreme 

events. 

Suppose Y be a positive random variable follows the logistic distribution with shape parameter   β > 0, and its cumulative distribution 

function is given by 
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and its corresponding PDF is 
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Tahir et al. (2016) has defined a new generating family of continuous distributions generated from a logistic random variable called 

the logistic-X family. The probability density function of this distribution can be symmetrical, positively skewed, negatively skewed 

and reversed-J shaped, and can have increasing, decreasing, bathtub and upside-down bathtub hazard rates shaped. Mandouh (2018) 

has introduced Logistic-modified Weibull distribution which is flexible for survival analysis as compared to modified Weibull 

distribution. Joshi & Kumar (2020) have introduced the Lindley exponential power distribution having a more flexible hazard rate 

function. Mansoor et al. (2019) have introduced a three-parameter extension of the exponential distribution which contains as sub-

models the exponential, logistic-exponential and Marshall-Olkin exponential distributions. The distribution is very flexible and its 

associated density function can be decreasing or unimodal. Lan and Leemis (2008) has presented an approach to define the logistic 
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compounded model and introduced the logistic–exponential survival distribution. This has numerous useful probabilistic properties 

for lifetime modeling. Unlike most distributions in the bathtub and upside down bathtub classes, the logistic–exponential distribution 

exhibit closed-form density, hazard, cumulative hazard, and survival functions. The survival function of the logistic–exponential 

distribution is 
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Applying the similar approach used by (Lan & Leemis, 2008) we have introduced the new distribution called Logistic- exponential 

power (LEP) distribution. The key objective of this paper is to establish a more flexible distribution by adding just one extra 

parameter to the exponential power distribution to attain a better fit to the lifetime data sets. We have presented some mathematical 

and statistical properties and its applicability. The different sections of the proposed study are arranged as follows. We have presented 

the Logistic- Exponential power (LEP) distribution and its various mathematical and statistical properties in section 2. We have make 

use of three well-known estimation methods to estimate the model parameters namely the maximum likelihood estimation (MLE), 

least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. For the maximum likelihood (ML) estimate, we 

have constructed the asymptotic confidence intervals using the observed information matrix are presented in Section 3. Two real data 
sets have been considered to explore the applicability and capability of the proposed distribution in section 4. In this section, we 

present the estimated value of the parameters and log-likelihood, AIC, BIC and CAIC criterion for ML, LSE, and CVME also the 

goodness of fit of the proposed distribution is evaluated by fitting it in comparison with some other existing distributions using two 

real data sets. Finally, in Section 5 we present some concluding remarks. 

 
II.  THE LOGISTIC- EXPONENTIAL POWER (LEP) DISTRIBUTION 

 

Adopting the similar approach used by (Lan & Leemis, 2008) we have created a new distribution called Logistic- exponential power 

(LEP) distribution. Let X be a non negative random variable with a positive shape parameters α and β and a positive scale parameter λ 

then CDF of logistic- exponential power distribution can be defined as 
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The PDF of the logistic-exponential power distribution is 
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This CDF function be similar to the log logistic CDF function with the second term of the denominator being changed in its base to an 

exponential power function, hence we named it logistic- exponential power distribution. 

 

Reliability function  

The reliability function of Logistic- exponential power distribution is 

 ( ) 1 ( )R x F x   
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Hazard function  

The failure rate function of Logistic- exponential power distribution can be defined as, 
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In Figure 1, we have displayed the plots of the PDF and hazard rate function of LEP distribution for different values of α, β and λ. 
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Figure 1. Plots of PDF (left panel) and hazard function (right panel) for different values of α, β and λ. 

 

Reverse hazard rate function 

The reverse hazard rate function of LEP distribution can be defined as 
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Quantile function 

The Quantile function of Logistic exponential power distribution can be expressed as 
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Median: 

The median of Logistic exponential power distribution can be expressed as 
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Here we notice that median is depends up on scale parameter λ and shape parameter β only. 

Skewness and Kurtosis: 

The measures Skewness and Kurtosis based on quantiles can be calculated as, Bowley’s coefficient of skewness can be computed by 

using 
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Coefficient of kurtosis based on octiles which was defined by (Moors, 1988) is 
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III.  ESTIMATION OF THE MODEL PARAMETERS 

Here, the parameters of the proposed distribution are estimated by utilizing some well-known estimation methods which are as 

follows 

3.1. Maximum Likelihood Estimates 
For the estimation of the parameters of LEP distribution, the maximum likelihood method is the most commonly used method 

introduced by (Casella & Berger, 1990). Let, 1 2, ,..., nx x x  be a random sample from  , ,LEP     and the likelihood function,

 , ,L     is given by, 
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Now log-likelihood density is 
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 (3.1.1) 

Differentiating (3.1.1) with respect to α, β and λ we get, 

 
   

1 1

( ) ln ( )
ln ( ) 2

1 ( )

n n
i i

i a
i i i

D x D xl n
D x

D x



   


  

 
   

 

1 1 1 1

e 11

1

e ( )
ln e

( )

ln ( ) e
                                      2

ln
ln ln ( 1)

1 ( )

i

i

xi
i

xn n n n
x i i i

i i i i i

i i i i i

xn
i i i

a
i i

x D x xl n
x x x x x

D x

x x D x

D x






 


 

 

 









   

 



 






  


   



 

e 1 e 11

1 1 1 1

e e ( ) e
e 2

( ) 1
(

( )
1)

x xi i
i i i

i

x x xn n n n
x i i i

i i a
i i i ii i

x x D xl n
x x

D x D x

 
   


    

  
 


  

   


   

 
      

Where -1( ) -1
xie

iD x e




  

Equating above three non linear equations to zero and solving simultaneously for α, β and λ, we get the maximum likelihood estimate 

ˆ ˆˆ ,    and    of the parameters α, β and λ. By using computer software like R, Matlab, Mathematica etc for maximization of (3.1.1) 

we can obtain the estimated value of α, β and λ. For the confidence interval estimation of α, β and λ and testing of the hypothesis, we 

have to calculate the observed information matrix. The observed information matrix for α, β and λ can be obtained as, 
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Let ( , , )     represent the space for the model parameters and the corresponding MLE of   as ˆ ˆˆ ˆ( , , )   , then 
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 where  A   is the Fisher’s information matrix. Using the Newton-Raphson algorithm to maximize the 

likelihood creates the observed information matrix and hence the variance-covariance matrix can be calculated as, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for the model parameters α, β and λ can 

be constructed as, 
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3.2. Method of Least-Square Estimation (LSE) 

 
Swain et al. (1988) have introduced the ordinary least square estimators and weighted least square estimators to estimate the 

parameters of Beta distributions. Here the same technique is adopted for the estimation of the parameters of the LEP distribution. The 

least-square estimators of the unknown parameters α, β and λ of LEP distribution can be calculated by minimizing  
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with respect to α, β and λ. 
 

Differentiating (3.2.2) with respect to α, β and λ we get, 
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Similarly the weighted least square estimators can be obtained by minimizing 
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Hence, the weighted least square estimators of α, β and λ respectively can be obtained by minimizing, 
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 

  (3.2.3) 

with respect to α, β and λ. 

 

3.4. Method of Cramer-Von-Mises estimation (CVME) 

 

The CVME estimators of α, β and λ are obtained by minimizing the function 

    
2

:

1

1 2 1
; , , | , ,

12 2

n

i n

i

i
C X F x

n n
     



 
   

 
  

 

 

  

2

1

1 1 2 1
1

12 2
1 exp 1 1i

n

xi

i

n n
e






 
 

    
   
 

  (3.4.1) 

Differentiating (3.4.1) with respect to α, β and λ we get, 
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 simultaneously we will get the CVM estimators. 
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IV.  APPLICATION TO REAL DATASET 

In the following section, we illustrate the applicability of the LEP distribution by using two different real datasets used by previous 

researchers. To illustrate the goodness of fit of the Lindley inverse exponential distribution, we have taken some well known 

distribution for comparison purpose which are listed blew, 

A. Generalized Exponential Extension (GEE) distribution: 

The probability density function of GEE introduced by (Lemonte, 2013) having upside down bathtub-shaped hazard function 

distribution with parameters ,  and  is 

      

  

1

1

1 1 1

1 1 1 0

GEEf x; , , x exp x

exp x ; x .

 




     







   

    
  

 

B. Lindley-Exponential (LE) distribution: 

The probability density function of LE (Bhati, 2015) can be expressed as 

    
2

1

( ) 1 1 ln 1 ; , >0, 0
1

x x x

LEf x e e e x


  
  




   

     
 

 

C. Generalized Exponential (GE) distribution 

The probability density function of generalized exponential distribution (Gupta & Kundu, 1999) 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


     . 

D. Chen distribution 

The probability density function of Chen distribution (Chen, 2000) is

  1 1 0 0x x
CNf x; , x e exp e ; ( , ) , x

          
     

  

. 

E. Exponential power (EP) distribution 

 

The probability density function Exponential power (EP) distribution (Smith & Bain, 1975) is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
    

 

. 

where α and λ are the shape and scale parameters, respectively. 

 

Dataset-I (NP data) 

We illustrate the applicability of the LC model using a real dataset used by former researchers. We have taken 100 observations on 
breaking the stress of carbon fibers (in Gba) (Nichols & Padgett, 2006). 

 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 

3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 

2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 

5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 

2.88, 2.82, 2.05, 3.65. 

 

To estimate the MLEs we are utilizing the optim() function in R software (R Core Team, 2020) and (Ming, 2019) by maximizing the 

likelihood function (3.1). By maximizing the likelihood function in (3.1) we have obtained ̂ = 1.8940, ̂ = 1.2276, ̂ = 0.3268 and 

corresponding Log-Likelihood value is l = -141.2223. We have presented the MLE’s with their standard errors (SE) and 95% 

confidence interval for α, β, and λ in Table 1. 
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Table 1: MLE and SE and 95% confidence interval for α, β and λ 

Parameter MLE SE 95% ACI 

alpha 1.8940 0.5296 (0.8560, 2.9321) 

beta 1.2276 0.3077 (0.6245, 1.8307) 

lambda 0.1650 0.0516 (0.0640, 0.2661) 

.  

We have displayed the graph of the profile log-likelihood function of α, β, and λ in Fig. 2 (Kumar & Ligges, 2011) and observed that 

the MLEs are unique. 

 

 
Figure 2. Graph of profile log-likelihood function of α, β, and λ (dataset-I). 

 

 

Dataset-II (Lee and Wang) 

 

The second real data set represents the remission times (in months) of a random sample of 128 bladder cancer patients (Lee and 

Wang, 2003): sorted data  

 

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 

2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 

4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 

7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 

11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 
18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05 

 

By maximizing the likelihood function in (3.1) we have obtained ̂ = 3.7321, ̂ = 0.2591, ̂ = 0.3268 and corresponding Log-

Likelihood value is l = -409.4238. We have presented the MLE’s with their standard errors (SE) and 95% confidence interval for α, β, 

and λ in Table 2. 

Table 2: MLE and SE and 95% confidence interval for α, β and λ 

Parameter MLE SE 95% ACI 

alpha 3.7321 1.6241 (0.5489, 6.9153) 

beta 0.2591 0.1088 (0.0459, 0.4723) 

lambda 0.3268 0.0675 (0.1945, 0.4591) 

. We have displayed the graph of the profile log-likelihood function of α, β, and λ in Fig. 3 and observed that the MLEs are unique. 

 

 
Figure 3. Graph of profile log-likelihood function of α, β, and λ (dataset-II). 
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In Fig. 4 we have presented the Q-Q plot (empirical quantile against theoretical quantile) for both data sets.  

 
 

Figure 4. The Q-Q plots of the data set-I (left panel) and data set-II (right panel). 

 

  

Figure 5. CDF plots (empirical distribution function against theoretical distribution function) of data set-I (left panel) and data set-II 

(right panel). 

 

For the estimation of the parameters of the LEP distribution, we have made use of MLE, LSE and CVME methods. We have also 

used negative log-likelihood (-LL), Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike 

Information criterion (CAIC) and Hannan-Quinn information criterion (HQIC), statistic for the comparison of goodness of fit 

propose. The expressions to compute AIC, BIC, CAIC and HQIC are listed below: 

 

i. ˆ2 ( ) 2AIC l k     

ii.  ˆ2 ( ) logBIC l k n    

iii.  2 1

1

k k
CAIC AIC

n k


 

 
  

iv.  ˆ2 ( ) 2 log logHQIC l k n        

where k is the number of parameters and n is the size of the sample in the model under consideration. Further, in order to assess the 

fits of the LEP distribution with some other distributions, the Kolmogorov-Simnorov (KS), the Anderson-Darling (W) and the 

Cramer-Von Mises (A2) statistic are used. These statistics are widely used to compare non-nested models and to illustrate how closely 

a specific CDF fits the empirical distribution of a given data set.  These statistics are calculated as 

  

 
1

1
max ,i i

i n

i i
KS d d

n n 

 
   

 
 

    1

1

1
2 1 ln ln 1

n

i n i

i

W n i d d
n

 



         
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  
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2

1

2 11

12 2

n

i

i

i
A d

n n
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where  i i  ;d CDF x  the xi’s being the ordered observations. 

 

In Table 3 and Table 4 we have presented the estimated value of the parameters of Logistic exponential power distribution using 

MLE, LSE and CVME method and their corresponding log-likelihood, AIC and KS statistic with p-value.  

  

Table 3: Estimated parameters, log-likelihood, AIC and KS statistic with p-value (Dataset-I) 

Estimation 

Method 
̂  ̂  ̂  -ll AIC KS(p-value)  

MLE 1.8940 1.2276 0.1650 141.2223 288.4445 0.0623(0.8327)  

LSE 0.9915 2.2896 0.0581 158.9975 323.9951 0.0588(0.8802)  

CVME 0.9803 2.3506 0.0546 163.0648 332.1297 0.0610(0.8511)  

 

Table 4: Estimated parameters, log-likelihood, AIC and KS statistic with p-value(Dataset-II)   

Estimation 

Method ̂  ̂  ̂  -ll AIC KS(p-value)  

MLE 3.7321 0.2591 0.3268 409.4238 824.8476 0.0316(0.9995)  

LSE 5.8651 0.1654 0.3891 409.7016 825.4033 0.0305(0.9998)  

CVME 5.8717 0.1672 0.3878 409.6965 825.3931 0.0310(0.9997)  

 

 
 

Figure 4. The Histogram and the density function of fitted distributions of dataset-I (left panel) and dataset-II (right panel) of MLE, 

LSE and CVME methods. 

 

 

We have calculated the value of  Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike 

information criterion (CAIC) and Hannan-Quinn information criterion (HQIC) for the assessment of goodness of fit of the proposed 

model, which are displayed in Table 4 and Table 5 for dataset I and II respectively.  

Table 4: Log-likelihood (LL), AIC, BIC, CAIC and HQIC (dataset-I) 

Model -LL AIC BIC CAIC HQIC 

LEP 141.2223 288.4445 296.2600 288.6945 291.6076 

GEE 141.3708 288.7416 296.5571 288.9916 291.9047 

LE 143.2473 290.4946 295.7049 290.6183 292.6033 

EP 145.9589 295.9179 301.1282 296.0391 298.0266 

GE 146.1823 296.3646 301.5749 296.4883 298.4733 

Chen 148.9044 301.8089 307.0192 301.9326 303.9176 
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Table 5: Log-likelihood (LL), AIC, BIC, CAIC and HQIC (dataset-II) 

Model -LL AIC BIC CAIC HQIC 

LCD 409.4238 824.8476 833.4037 825.0411 828.3240 

GEE 410.6013 827.2026 835.7586 827.3961 830.6789 

LE 412.6254 829.2507 834.9548 829.3467 831.5683 

GE 413.0776 830.1552 835.8592 830.2512 832.4728 

EP 426.6474 857.2948 862.9989 857.3893 859.6124 

Chen 431.1625 866.3251 872.0291 866.4211 868.6427 

 

 

In fig. 5, we have displayed the histogram and the density function of fitted distributions and empirical distribution function with 

estimated distribution function of LEP distribution and some selected distributions taken for comparisons.  

 

 
Figure 5. The Histogram and the density function of fitted distributions for the dataset-I (left panel) and dataset-II (right panel). 

Empirical distribution function with estimated distribution function for the dataset-I (left panel) and dataset-II (right 

panel). 

 

  
Figure 6. Empirical distribution function with estimated distribution function for the dataset-I (left panel) and dataset-II (right 

panel). 

 

For the comparison of goodness-of-fit of the LEP distribution with other competing distributions we have presented the value of 

Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics in Table 6 and Table 7 for the 

both data sets. We observe that the LEP distribution has the minimum value of the test statistic and higher p-value hence we conclude 

that the LEP distribution gets quite better fit and more consistent and reliable results then all the models taken for assessment. 
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Table 6: The goodness-of-fit statistics and their corresponding p-value (dataset-I) 

Model KS(p-value) AD(p-value) CVM(p-value) 

LCD  0.0623(0.8327)  0.0642(0.7885)  0.3829(0.8652)  

GEE  0.0654(0.7862)  0.0723(0.7385)  0.4202(0.8281)  

LE  0.0838(0.4836)  0.1225(0.4860)  0.7042(0.5549)  

GE  0.0993(0.2771)  0.1861(0.2963)  1.3081(0.2297)  

EP  0.1078(0.1959)  0.2293(0.2174)  1.2250(0.2581)  

Chen  0.0945(0.3336)  0.2180(0.2353)  1.6938(0.1364)  

 

 

Table 7 

The goodness-of-fit statistics and their corresponding p-value (dataset-II) 

Model KS(p-value) AD(p-value) CVM(p-value) 

LCD  0.0316(0.9995)  0.0146(0.9997)  0.0961(0.9998)  

GEE  0.0442(0.9636)  0.0394(0.9367)  0.2630(0.9631)  

LE  0.0691(0.5740)  0.1131(0.5252)  0.6276(0.6219)  

GE  0.0725(0.5115)  0.1279(0.4652)  0.7137(0.5472)  

EP  0.1199(0.0503)  0.5993(0.0223)  3.6745(0.0126)  

Chen  0.1426(0.0108)  0.6879(0.0135)  4.3878(0.0057)  

 

V. CONCLUSIONS 

In this study, we have introduced a three-parameter univariate continuous distribution named Logistic-exponential power 

(LEP) distribution. Some mathematical and statistical properties of the LEP distribution are presented such as the shapes of the 

probability density, cumulative density and hazard rate functions, survival function, reverse hazard rate function quantile function, the 

skewness, and kurtosis measures are derived and established and found that the proposed model is flexible and inverted bathtub 

shaped hazard function. We have employed three well-known estimation methods namely maximum likelihood estimation (MLE), 

least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) methods to estimate the model parameters and we 

concluded that the MLEs are quite better than LSE, and CVM. Two real data sets are considered to explore the applicability and 

suitability of the proposed distribution and found that the Logistic-exponential power model is quite better than other lifetime model 

taken into consideration. We hope this model may be an alternative in the field of survival analysis, reliability theory and applied 

statistics.  
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